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The self-consistent decay-of-mixing~SCDM! semiclassical trajectory method for electronically
nonadiabatic dynamics is improved by modifying the switching probability that determines the
instantaneous electronic state toward which the system decoheres. This method is called coherent
switching with decay of mixing~CSDM!, and it differs from the previously presented SCDM
method in that the electronic amplitudes controlling the switching of the decoherent state are treated
fully coherently in the electronic equations of motion for each complete passage through a strong
interaction region. It is tested against accurate quantum mechanical calculations for 12 atom-diatom
scattering test cases. Also tested are the SCDM method and the trajectory surface hopping method
of Parlant and Gislason that requires coherent passages through each strong interaction region, and
which we call the ‘‘exact complete passage’’ trajectory surface hopping~ECP-TSH! method. The
results are compared with previously presented results for the fewest switches with time uncertainty
and Tully’s fewest switches~TFS! surface hopping methods and the semiclassical Ehrenfest method.
We find that the CSDM method is the most accurate of the semiclassical trajectory methods tested.
Including coherent passages improves the accuracy of the SCDM method~i.e., the CSDM method
is more accurate than the SCDM method! but not of the trajectory surface hopping method~i.e., the
ECP-TSH method is not more accurate on average than the TFS method!. © 2004 American
Institute of Physics.@DOI: 10.1063/1.1793991#

I. INTRODUCTION

The development of semiclassical methods for non-
Born–Oppenheimer trajectories~i.e., classical or quasiclassi-
cal molecular dynamics that involves coupled electronic
states! requires a delicate blending of quantum mechanics for
the electronic motions with classical~or quasiclassical! tra-
jectories for the nuclear motions.1 The treatment of Born–
Oppenheimer breakdown, therefore, requires an artful
approach,2 and several methods have been developed. We
distinguish four general classes of methods, which differ in
their treatment of electronic decoherence. Decoherence is de-
fined in this paper as the tendency of the time-evolved den-
sity matrix to assume a form corresponding to a statistical
ensemble of states rather than a coherent combination of
state wave vectors. This is sometimes called dephasing or
disentanglement.

The first general approach to non-Born–Oppenheimer
trajectories is the trajectory surface hopping1 ~TSH! ap-
proach, in which individual trajectories evolve independently
on a single potential energy surface with occasional instan-
taneous hops or switches between surfaces. The most suc-
cessful of the well-tested versions of this approach are Tul-
ly’s fewest switches~TFS! method3 and the fewest switches
with time uncertainty~FSTU! method.4,5 For these methods,
one can think of an accurate time-dependent wave packet as
being modeled by a swarm of independent trajectories propa-
gating on the different electronic surfaces. Each trajectory
hops stochastically between the electronic surfaces according
to an associated electronic density matrix, different for each

trajectory, which is obtained by propagating the solution to
the time-dependent electronic Schro¨dinger equation coher-
ently along the classical trajectory. The electronic density
matrices for any two trajectories in the ensemble may differ
for two reasons:~1! the two trajectories have different initial
coordinates and/or momenta, and~2! they hop at different
times along their trajectories. The ensemble averaged elec-
tronic density matrix~which may be compared with the ac-
curate quantum mechanical electronic density matrix! effec-
tively decoheres ~i.e., the off-diagonal elements
systematically tend toward zero! for the two reasons men-
tioned above, i.e., due to the initial width of the wave packet
and due to the divergence of trajectories in phase space
caused by surface hops. We stress that for each trajectory the
electronic density matrix is fully coherent, i.e., it is only
when the entire ensemble is averaged that the two sources of
decoherence mentioned above arise.

The second general class of methods includes self-
consistent potential~SCP! methods,1 in which the nuclei
evolve on an effective time-dependent potential energy sur-
face that depends on the current quantum mechanical elec-
tronic density matrix. The simplest version of this approach
is the semiclassical Ehrenfest~SE! method,6–9 and the most
highly developed versions are the mean field with surface
hopping~MF/SH! method10 and the self-consistent decay of
mixing ~SCDM! algorithm.11 The SE method involves an
ensemble of trajectories and therefore includes some deco-
herence due to the initial spread of the wave packet. The
electronic density matrix for each trajectory in the ensemble

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 16 22 OCTOBER 2004

76580021-9606/2004/121(16)/7658/13/$22.00 © 2004 American Institute of Physics

Downloaded 14 Oct 2004 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1793991


is propagated with full coherence, as discussed above for the
TSH method. Furthermore, SE trajectories evolve under the
influence of all of the electronic states at once according to
the electronic state density matrix~i.e., there is no hopping
between states! such that each trajectory in the ensemble is
fully coherent. During a rapid passage of a single region of
strong coupling, one may expect fully coherent nuclear mo-
tion, and the SE approach is reasonable for that case. The
lack of decoherence, however, leads to nonphysical behavior
in the asymptotic regions of the simulations~i.e., as the sys-
tem comes into the interaction region from reactants or goes
toward products! where the coupling is often small or zero;
this contrasts with the TSH approach, which leads to physi-
cal asymptotic behavior but may be less accurate in describ-
ing strongly coupled motions.

The SCDM method introduces the physical asymptotic
behavior of a TSH method into a SCP method. In particular,
decoherence~discussed above only as an effect of ensemble
averaging! is introduced explicitly into the equations of mo-
tion for each individual trajectory in an average way, while
still propagating each trajectory independently. This modifi-
cation results in a SE-like trajectory with the correct limiting
behavior.

Alternatively one might try to improve upon TSH meth-
ods by making them more coherent. This leads to a class of
methods that may be called coherent passage methods. In
coherent passage methods, a trial classical path with continu-
ous momenta is used to propagate the system through an
entire strong coupling region with a fully coherent treatment
of the electronic density matrix~i.e., without surface hopping
and without decay of mixing!. Then, the electronic transition
probabilities from this coherent evolution are used in some
fashion to control the trajectory outcome, but subsequent
passages through this or any other strong interaction region
are not treated as coherent with the previous passage. The
importance of decoherence between successive passages
through a strong interaction region has been demonstrated
most clearly by Thachuk, Ivanov, and Wardlaw12 in a low-
dimensionality problem, namely, the evolution of a two-state
diatomic molecule in a strong electromagnetic field; their
discussion is very enlightening and makes it clear that the
combination of coherent evolution through a strong interac-
tion region and decoherence between such passages can also
be important in the general case~although their algorithm is
not general!. Their examples make it especially clear that
maintaining coherence over an entire trajectory can lead to
significant errors. One classical path method that was devel-
oped with this kind of consideration as a motivation is the
surface hopping method of Parlant and Gislason,13,14 which
differs from an earlier method of Kuntz, Kendrick, and
Whitton15 in the prescription for calculating the hopping
probability and from an earlier method of Blais and Truhlar16

in its insistence on coherent evolution through each ‘‘com-
plete passage’’1~a! of a strong coupling region. This method,
therefore, mitigates some of the decoherence that arises~in
other TSH methods! from surface hops within strongly
coupled regions as well as the inaccuracies explained by
Thachuk, Ivanov, and Wardlaw12 that arise from treating suc-
cessive passages coherently. Parlant and Gislason13 called

their method the ‘‘exact’’ surface hopping scheme because it
uses the exact time-dependent electronic Schro¨dinger equa-
tion for electronic motion in each complete passage through
a region of strong coupling. This could be confusing because
a variety of surface hopping methods and other semiclassical
methods use the exact time-dependent electronic Schro-̄
dinger equation in one or another way as part of the algo-
rithm; to emphasize the special character of the Parlant-
Gislason method we call it ‘‘exact complete passage’’
trajectory surface hopping~ECP-TSH!.

The methods discussed so far are independent trajectory
methods. Another class of methods for non-Born–
Oppenheimer trajectories involves coupled trajectories,
where an entire swarm of trajectories is evolved simulta-
neously in such a way that the entire electronic state density
matrix influences the motion of each trajectory. This is a very
reasonable approach because it is the ensemble of trajecto-
ries, not the individual phase points, that should be inter-
preted when one semiclassically infers quantum mechanical
transition probabilities from classical mechanics. The most
thoroughly developed coupled-trajectory schemes are the
quantum/classical Liouville methods of Martens and
co-workers17 and others18 and the full multiple spawning
method.19 Like SCDM, this class of methods explicitly in-
cludes dynamical decoherence, but it is more complicated
than the independent-trajectory methods, and coupled-
trajectory methods require considerably more computational
effort to fully sample the extended phase space of both the
nuclear coordinates and momenta and the electronic prob-
ability amplitudes. Therefore, although they are very prom-
ising, we will not consider coupled-trajectory methods fur-
ther in the present paper.

Our recent work has involved refining both the TSH and
SCP approaches leading, respectively, to the recent develop-
ments of the FSTU~Ref. 4! and SCDM~Ref. 11! methods.
We emphasize that, in the context of TSH, the TFS and
FSTU surface hopping schemes both allow hops even in the
middle of a single passage of a strong coupling region, and,
in the context of SCP calculations, the SCDM scheme allows
some decay of mixing at all points along a trajectory, even
for the equations determining the probability of switching
the decoherent state, and therefore these methods do not con-
form to the coherent passage ansatz. It is not clear from
previous work how important this might be for multidimen-
sional problems since Refs. 12 and 13 only tested the impor-
tance of coherent complete passage for low-dimensional
problems where phases, coherence, and quantum mechanical
interference effects are not subject to even the minimal av-
eraging inherent in collisions of molecules when one does
not initially select and finally analyze the angular momentum
projection quantum numbers. Therefore in this paper we con-
sider coherent complete passage methods in more detail and
compare their performance to that of the TFS, FSTU, SE,
and SCDM methods. In particular we examine two such
methods, the ECP-TSH method13 discussed above and a
coherent-passage-type method obtained by employing a co-
herent switching algorithm in SCDM for each complete pas-
sage of a strong coupling region. We call the latter method
coherent switches with decay of mixing or CSDM. We also

7659J. Chem. Phys., Vol. 121, No. 16, 22 October 2004 Coherent switching

Downloaded 14 Oct 2004 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



test a variant, explained below, called CSDM-C.
Section II reviews fundamental time-dependent coupled

equations for the motion of the electrons and nuclei that are
used by all of the methods tested in this paper. Section III
reviews the ECP-TSH method and compares its equations to
those for the TFS and FSTU methods. Section IV presents
the CSDM method. Section V presents the methodology and
comparison of several semiclassical trajectory methods for
five three-dimensional atom-molecule systems. Section VI
presents the results and discussion. Section VII summarizes
the main conclusions.

II. FUNDAMENTAL TIME-DEPENDENT EQUATIONS

All of the methods tested in this paper employ the time-
dependent electronic Schro¨dinger equation, which may be
written as follows in terms of the elementsrkk8 of the elec-
tronic density matrix:11

i\ṙkk85(
l

~r lk8@Ukl2 i\Ṙ"dkl#2rkl@Ulk82 i\Ṙ"dlk8# !,

~1!

wherek andk8 label electronic states~k, k851,2,...,m, where
m is the number of electronic states!, R is anN-dimensional
vector of nuclear coordinates, an overdot denotes a time de-
rivative, andUkk8 are the matrix elements of the electronic
HamiltonianHel ~which includes nuclear-nuclear repulsion!:

Ukk85^kuHeluk8&. ~2!

The diagonal elements ofUkk8 are called potential energy
surfaces, and the off-diagonal elements couple motion in the
various electronic states. The eigenvalues ofU are the adia-
batic potential energy surfaces, calledVk . The nonadiabatic
coupling vectordkk8 is an m3m anti-Hermitian matrix in
electronic state space, and each element is a vector inR,

dkk85^ku“Ruk8&, ~3!

where“R is the N-dimensional nuclear gradient. We solve
the equations in an isoinertial, mass-scaled nuclear coordi-
nate systemR in which all nuclear masses are scaled to the
same reduced massm. The momentum conjugate toR is
calledP. In the adiabatic representation,U is a diagonal ma-
trix calledV; and one can define a ‘‘diabatic’’ representation
where dkk8 is zero andU is not diagonal. Strictly diabatic
representations do not exist,20 but representations in which
dkk8 is small enough to be neglected are very useful and,
following a widespread practice in the field, will be called
diabatic in the present paper.

The semiclassical Hamiltonian that governs nuclear mo-
tion can be written as

HC5
P2

2m
1VE, ~4!

where VE is an effective potential energy surface, and its
form depends on the specific semiclassical trajectory method
and how that method treats non-Born–Oppenheimer effects.
The nuclear motion is represented by a swarm of classical
trajectories, and the nuclear position and momentum of each
trajectory evolves according to classical equations of motion,

Ṙ5P/m, ~5!

Ṗ52“RVE. ~6!

We note that the electronic Schro¨dinger equation may be
formulated in the particle representation where electronic ac-
tion and angle variables are transformed to particlelike gen-
eralized coordinates and momenta,6 or in the density repre-
sentation of Eq.~1!. Although the two representations are
equivalent in the case of two electronic states, the particle
representation requires an adiabatic–diabatic transformation
that can be ambiguous for the case of more than two elec-
tronic states.21 Throughout the present paper, we use the den-
sity representation as in Eq.~1!.

We assume that the adiabatic and diabatic representa-
tions are the same in asymptotic regions, so that bothUkk8
with kÞk8 anddkk8 vanish asymptotically.

In TSH methods,VE is given by a single potential en-
ergy surface~i.e., an adiabatic potential energy surfaceVk or
a diabatic potential energy surfaceUkk in the adiabatic and
diabatic representations, respectively!, andk may switch to
some other statek8 at certain points along the trajectory ac-
cording to some hopping probabilitygkk8 , which is a func-
tion of the electronic state density matrixr and its time
derivative. Except possibly at hops~or frustrated hops ex-
plained below!, r is obtained by integrating Eq.~1! without
any modifications. In SCP methods,VE is more complicated,
and in SCP methods that include decay of mixing, one also
modifies Eq.~1!. We will consider SCP methods further in
Sec. IV.

III. ECP-TSH METHOD

In trajectory surface hopping~TSH! methods, nonadia-
batic transitions are treated as discontinuous hops~or
switches! from one potential surface to another. The elec-
tronic coupled equations~1! are integrated along a classical
trajectory and are used to determine the location of hops. In
general, trajectory surface hopping methods involve trajecto-
ries that hop back and forth between potential energy sur-
faces, and they differ in their prescription for how to do so.
In Sec. I, we mentioned that the most satisfactory versions of
the well-tested TSH approaches are the TFS method3 and the
FSTU method,4,5 which is an extension of the TFS method
that improves the treatment of frustrated hops, which are
tentative hops forbidden by energy or momentum conserva-
tion. Both TFS and FSTU, in principle, allow a trajectory to
hop wheneverrkk is changing. On the other hand, the ECP-
TSH method, developed by Parlant and Gislason,13 is defined
in such that a trajectory is allowed to hop only where the
coupling is locally maximum. For instance, in the two-state
case the ECP-TSH method uses

V~ t !5uṘ"d12~ t !u ~7!

as a measure of the strength of the coupling. Hops are al-
lowed at positions along a trajectory where there is a local
maximum of this coupling strength function. Furthermore,
the electronic density is reinitialized at all local minima ofV,
i.e., rkk is set to unity wherek is the currently occupied
electronic state, and all otherrk8k9 are set to zero. The hop-
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ping probability from statek to k8 at each maximum ofV is
determined by integrating along a trajectory between the two
adjacent local minima ofV, i.e., by integrating from one
local minimum att i 21 to another att i , wheret i is ith local
minimum of V(t). In particular, before it is reinitialized,
rkk(t i) determines the hopping probability at the local maxi-
mum of V betweent i 21 and t i . In the ECP-TSH method, a
trajectory undergoes complete coherent passage between two
adjacent local minima ofV before the trajectory is brought
back to the maximum ofV to allow for a hop. After the
attempted hop, the coherencerkk8 is destroyed asrkk8 is
reinitialized. This is different from TFS and FSTU where
rkk8 is never reinitialized and is therefore fully coherent
along each entire trajectory.

Note thatV tends to zero ast→` after the collision~or
photodissociation event!. This is interpreted as a local mini-
mum, and so the trajectory can hop at the final local maxi-
mum of V. Similarly t0 is defined as the start of the trajec-
tory so that a hop can occur at the first local maximum forV.

The original ECP-TSH applications by Parlant and
Gislason13 used the so-called ‘‘ants’’ sampling scheme,
where at each hopping location the trajectory is split into two
weighted branches. Both branches are propagated indepen-
dently on the two potential energy surfaces, and each branch
may undergo additional future branching. Later, Parlant and
Alexander14~a! applied a mixed anteater/ants scheme, and
Sizun, Song, and Gislason14~b! used the anteater sampling
scheme where only one branch is followed. The sampling
algorithm involves a cutoff parameterVcutoff ; only maxima
with V greater thanVcutoff are recognized as possible hop-
ping locations. We apply the anteater implementation of the
ECP-TSH method, recognizing that for a large enough en-
semble of trajectories both the ants and anteater implemen-
tations should give the same results.

Although the original ECP-TSH method13 was formu-
lated in the adiabatic representation, there is no reason why it
cannot be applied in the diabatic representation. Note thatd12

is given as a function of the matrix element ofU by Eq.~A9!
of Ref. 22, and in the two-state case, the nonadiabatic cou-
pling vector d12 provides an equally good measure of the
coupling in the diabatic representation as in the adiabatic
one.11 In the present paper we therefore extend the ECP-TSH
method to the diabatic representation by using the same
scheme as is in the adiabatic representation based on the
same reference equation~7!. This extension will be tested for
the test cases in Sec. V.

IV. SELF-CONSISTENT POTENTIAL METHODS

In the self-consistent potential methods, the effective po-
tential energy surfaceVE is

VE5(
k

rkkUkk1(
k

(
k8,k

2 Re~rkk8!Ukk8 . ~8!

Recall that in the adiabatic representationUkk5Vk and
Ukk850 if kÞk8, whereas in the diabatic representation the
second term of Eq.~8! is nonzero. In the decay-of-mixing
methods, the electronic density evolves by

ṙ i j 5 ṙ i j
C1 ṙ i j

D ~9!

in which the first part comes from fully coherent contribution
in Eq. ~1!, and the second part is the decay-of-mixing term,11

ṙ i i
D5H 2

r i i

t iK
, iÞK

(
j ÞK

r j j

tK j
, i 5K

~10!

for the diagonal elements, and

ṙ i j
D55

2
1

2 S 1

t iK
1

1

t jK
D r i j , iÞK, j ÞK

1

2 S 1

rKK
(
kÞK

rkk

tKk
2

1

t jK
D r i j , i 5K, j ÞK

1

2 S 1

rKK
(
kÞK

rkk

tKk
2

1

t iK
D r i j , iÞK, j 5K

~11!

for the off-diagonal elements. Detailed derivations of Eqs.
~10! and ~11! are given in Ref. 11. The equations of motion
for the nuclear position are given by Eq.~5!, and those for
the momentum are

Ṗ5ṖC1ṖD, ~12!

where the first term is the instantaneous change in momen-
tum due to the fully coherent nonadiabatic motion deter-
mined by Eqs.~1!, ~6!, and~18!:

ṖC~ t !52(
k

rkk“RUkk2(
k

(
k8,k

~2 Rerkk8!“RUkk8

1(
j

(
k

(
k8

~2 Rerk j!Ukk8dk8 j . ~13!

In the diabatic representation, Eq.~13! becomes

ṖC~ t !52(
k

rkk“RUkk2(
k

(
k8,k

~2 Rerkk8!“RUkk8

~14!

and in the adiabatic representation, Eq.~13! becomes

ṖC~ t !52(
k

rkk“RVk

1(
k

(
k8

Re~rkk8!~Vk2Vk8!dkk8 . ~15!

The second term in Eq.~12! is the decoherent force and is
given by

ṖD52
mV̇D

P"ŝ
ŝ ~16!

with23

V̇D5(
k

ṙkk
D Ukk1(

k
(

k8,k

2 Re~ ṙkk8
D

!Ukk8 . ~17!

The force in Eq.~16! drives the trajectory to a pure electronic
state. The unit vectorŝ represents the direction into which
energy is deposited and out of which energy is consumed,
and it is considered in Sec. IV D. The decoherent state
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switches during the trajectory with the switches governed by
a switching probability that will be discussed in Sec. IV A–
IV C.

IV.A. NDM

The natural decay of mixing~NDM! method23 computes
the switching probability by the most naı¨ve application of the
fewest switches3 criterion. For example, in the two-state
case, the probability of switching from decoherent stateK to
some other stateK8 between timet and timet1dt is given
by

PK→K85maxS 2
ṙKKdt

rKK
,0D5maxS 2

~ ṙKK
C 1 ṙKK

D !dt

rKK
,0D .

~18!

The multistate generalization of Eq.~18! is given in Eq.~A1!
of Appendix A.

IV. B. SCDM

As pointed out previously,11 ṙKK
D in Eq. ~18! is always

positive, and this causes a system modeled using the NDM
method to artificially resist changing its decoherent state.
The SCDM method makes a simple modification to Eq.~18!
by dropping the decoherent part in the numerator, i.e., the
switching probability is given by

PK→K85maxS 2
ṙKK

C dt

rKK
,0D . ~19!

This is called the self-consistent switching probability and
may be interpreted as ‘‘locally coherent.’’ Appendix A con-
tains the multistate generalization of Eq.~19!.

IV.C. CSDM

The electronic density matrix elementsrkk8 in the decay-
of-mixing algorithm vary along the trajectory and depend on
the location of decoherent state switches. If one of these
switches occurs during a traversal of a strong interaction re-
gion, the state change influences the dynamics ofrkk8 in the
remainder of that region. If we define coherence as the evo-
lution of the density matrix according to Eq.~1! with no
external influence on the trajectory, then the SE method is
coherent, but either decay of mixing or switches in the de-
coherent state destroy coherence. The effective decoherence
in the SCDM method is less severe than that in the NDM
method; since this has been found to improve the results,11 it
is interesting to consider a method that fully removes the
decoherence from the electronic state equations for each
strong interaction region; this is called the CSDM method. In
the CSDM method, the switching probability is controlled by
a fully coherent solution of Eq.~1! in each complete passage
of a strong interaction region. However, the effective poten-
tial for nuclear motions is treated as in the SCDM method.

Following Parlant and Gislason13 and Thachuk, Ivanov,
and Wardlaw,12 we modify the switching scheme to treat
each complete passage of a strong coupling region coher-
ently. We define

DK~ t !5(
j

udK j u2 ~20!

and

CK~ t !5(
j

udK j "Ṙvibu2. ~21!

We also define a coherent set of state populationsr̃KK8 . As
opposed torKK8 , which evolves by the decay-of-mixing
Eqs. ~9!–~11! and which is used in Eqs.~8! and ~13!–~17!,
r̃KK8 evolves by the completely coherent equation~1!. At
each local minimum ofDK(t) along trajectory, we setr̃ i j

5r i j for all i and j, and the probability of switching the
decoherent state is given by

PK→K85maxS 2
r8 KKdt

r̃KK
,0D . ~22!

This is called coherent switches with decay of mixing or
CSDM. In the multistate case, Eq.~A1! replaces Eq.~22!.
Alternatively, we could setr̃ i j 5r i j at each local minimum
of CK , and this is called CSDM based on a component of
nonadiabatic coupling or CSDM-C.

We emphasize that the equations of motion governing
the r̃ i j elements and hence governing the switching probabil-
ity in the CSDM method are treated in a coherent and unin-
terrupted way throughout each complete passage through a
strong coupling region~although one does allow switches in
the decoherent state!, but decoherence is introduced intor̃ i j

between different strong coupling regions by settingr̃ i j

5r i j ; the ECP-TSH method also integrates the electronic
equations of motion in a coherent way throughout each com-
plete transversal of a strong coupling region, but it handles
decoherence differently in several respects. First of all, there
are no decay-of-mixing terms. Second, the ECP-TSH method
involves hops with discontinuities in the nuclear momentum,
and when a hop occurs it requires that one goes back to a
point of maximal coupling, whereas the CSDM algorithm
never goes back to an earlier point in the trajectory. Third,
and this may be very important, in the ECP-TSH algorithm,
whether or not a hop occurs, at each local minimum ofV(t),
the electronic coefficients are reinitialized to unity or zero.
The analog in CSDM would be to setr̃ i j 5d i j d iK rather than
r̃ i j 5r i j . By settingr̃ i j equal tor i j , the amount of decoher-
ence is determined by the difference between the two elec-
tronic density matrices:r, which is propagated with decay-
of-mixing terms, andr̃, which is propagated coherently.
Thus, in particular, the amount of decoherence introduced by
CSDM at a local minimum ofDK(t) depends on the size of
the coupling region and other dynamical factors, whereas
ECP-TSH fully destroys the coherence between any two
strong coupling regions, no matter what their character is.

The NDM, SCDM, CSDM, and CSDM-C methods dif-
fer from each other only in the scheme that switches the
decoherent state. The NDM method uses the decay-of-
mixing electronic density to calculate the switching probabil-
ity; the SCDM method eliminates the decoherent part of the
electronic density locally in the switching algorithm; and the
CSDM and CSDM-C methods, in contrast, switch off the
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contribution of the decoherence to the electronic density ma-
trix used in the switching probability over an entire region of
strong coupling.

It is also interesting to comment on the relationship of
the CSDM method and the ECP-TSH method to the method
of Kuntz,24 which he has called the classical path surface
hopping~CPSH! method. Unlike ECP-TSH, which combines
complete coherent passage with surface hopping, or CSDM,
which combines them with a self-consistent potential
scheme, CPSH attempts to combine all three approaches. In
particular Kuntz uses the semiclassical Ehrenfest method in a
given strong interaction region, followed by decay of mixing
between strong interaction regions, after the last strong inter-
action region, or when the probability in closed states is too
high. @Although Kuntz calls this decay of mixing ‘‘surface
hopping,’’ it is achieved in practice by adding decay terms to
the Ehrenfest equation. The decay time is set equal to 0.25
times a monitoring interval, see Eq.~14! in Ref. 14~a!. The
monitoring interval is set equal to ‘‘one program unit,’’24~b!

which equals 5.4 fs, or to ‘‘a short-time interval.’’24~d! Be-
cause of the way that the decay terms are employed, it is not
unreasonable to think of the decay segments as smoothed
surface hops between or following Ehrenfest regions.# For a
system with a single strong interaction region the CPSH
method becomes similar to the semiclassical Ehrenfest
method with linear smooth sampling9 ~SE-LSS!. Since we
have previously shown that11,13 SCDM and NDM are more
accurate than SE-LSS and that11 SCDM is more accurate
than NDM, we have only tested adding the coherent-
complete-passage refinement to SCDM, not to the SE or
NDM methods. Furthermore we note that Kuntz compared
the CPSH method to ECP-TSH and concluded14~a! that the
two methods ought to produce very similar results since the
methods both integrate Eq.~1! through the strong interaction
region and differ only in technical aspects. Since we carry
out a complete test of the ECP-TSH method, which has the
advantage of not involving an undetermined monitoring in-
terval, we do not test the later, more complicated CPSH
method.

IV.D. Decoherent direction

In SCDM, the decoherent direction was originally given
by11

ŝ5~dKka0PKk
~d!d̂Kk6PvibP̂vib!/idKka0PKk

~d!d̂Kk6PvibP̂vibi ,
~23!

where a0 is a bohr length,P̂vib and d̂Kk are unitless unit
vectors in the direction ofPvib ~the local vibrational
momentum22! anddKk , respectively,dKk is the magnitude of
dKk , PKk

(d) is the component ofP̂vib in the direction ofdKk ,
andK is the decoherent state. The sign in Eq.~23! was cho-
sen such that the summation is additive. Since bothdKk and
Pvib are within the nonrotational subspace, usingŝ as the
decoherent direction conserves total angular momentum.
There is some ambiguity in separating vibrational and rota-
tional motion, i.e., in the definition ofPvib . To eliminate this
ambiguity, we replacePKk

(d) with P"d̂Kk ~i.e., the component
of total momentum in the direction ofdKk). This yields

ŝ5@dKka0~P"d̂Kk!d̂Kk6PvibP̂vib#/

idKka0~P"d̂Kk!d̂Kk6PvibP̂vibi . ~24!

Equations~23! and ~24! are for the two-state case; see Ref.
11 for a generalization of Eq.~23! to multiple states in both
adiabatic and diabatic representations, and we can generalize
Eq. ~24! in the same way.

IV.E. Decay-of-mixing time

In general, the SCDM and CSDM algorithms presented
above may be used with a variety of models for the decay-
of-mixing times t iK . For example, we previously11,23 pre-
sented simple models based primarily on phase decay and on
a combination of phase decay and the requirement that de-
mixing should vanish in the limit of low nuclear momentum.
In addition, Fiete and Heller and Turi and Rossky have pre-
sented treatments based on short-time25 or perturbative26

treatments of Gaussian wave packets. These treatments pro-
vide general guides to the form of the physical decoherence
function; however, we need to emphasize that physical deco-
herence and algorithmic demixing are closely related but
quantitatively different. Algorithmic demixing is the decay of
the reduced density matrix elements~off-diagonal elements
to zero and diagonal elements to zero or unity! that must be
added to a quantum/classical algorithm in order that a calcu-
lation based on an ensemble of independent trajectories of
the classical subsystem simulates, as well as possible, the
evolution of a real system in which both electronic and
nuclear coordinates are quantum mechanical. A single SCP
trajectory has a physical nuclear kinetic energy only if the
electronic state is pure. But a quantum mechanical reduced
density matrix generally corresponds to a mixture even when
the whole system is in a pure state; it corresponds to a pure
state only if the whole system is in an unentangled pure state.
Thus, in order to obtain a practical semiclassical algorithm
based on independent trajectories, we must devise an algo-
rithmic decay of mixing that does not correspond precisely to
quantum mechanical decoherence.

Although future work may develop more sophisticated
semiclassical justifications of the appropriate decay-of-
mixing rates that should be used, the calculations presented
here are based on the assumption that we can use the sim-
plest treatment that satisfies the following two constraints:

~1! At low values ofP"ŝ, Eq. ~16! requires that

1

t iK
;

P"ŝ→0

~P"ŝ!n, n.1 ~25!

in order that demixing does not occur when the momentum
in the direction that couples electronic and nuclear motion is
insufficient to support the required accompanying energy
transfer.

~2! The demixing time should not be shorter than the
shortest electronic time scale in the problem, which we take
to imply that

1

t iK
<

uVii 2VKKu
\

. ~26!
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Two of the simplest possible functions that satisfy these con-
straints are

t iK5\S C

uVii 2VKKu
1

C8

~P"ŝ!2/2m
D ~27!

and

t iK5
\

uVii 2VKKu S C1
E0

~P"ŝ!2/2m
D , ~28!

whereC andC8 are unitless parameters greater than or equal
to unity, andE0 is a positive parameter with units of energy.
Equation~27! is similar to the form we used in our previous
paper,11 and Eq.~28! with C50 is similar to the form we
used in our original23 decay-of-mixing paper. In the present
work, we have tested various forms of this type, withC51
through 5, and we have found that the results are not very
sensitive to the particular form oft iK or to the values of the
parameters, provided only thatt iK is large enough. As an
example, in Appendix B we present full sets of results with
three values ofE0 which illustrate the insensitivity of the
results to this parameter. The results are even less sensitive to
C. Therefore, we simply use Eq.~28! with C51 and E0

equal to 0.1 hartree.
All of the decay-of-mixing results given in this paper

follow the formalism of Eqs.~8!–~22!, ~24!, and ~28! and
differ only in how the switching probability is calculated.

V. THREE-DIMENSIONAL TEST CASES
AND METHODOLOGY

We apply the SCDM, CSDM, CSDM-C, and ECP-TSH
methods to five fully-dimensional model systems with vari-
ous initial conditions for a total of 12 test cases, as discussed
in Ref. 11. Descriptions of the model surfaces and details of
the accurate quantum mechanical calculations have been pre-
viously presented for the MXH~Ref. 27! and YRH~Ref. 28!
systems. Briefly, each model system has two electronic states
and is defined in terms of a diabatic potential energy matrix,
which includes two diagonal potential energy surfaces and a
coupling surface. The electronically nonadiabatic atom-
diatom collisions that comprise our test suite all have the
form

A* 1BC~v, j !→H B1AC~Eint8 ! ~29a!

A1BC~Eint9 !, ~29b!

where (A,B,C)5(M,H,X) and ~Y,R,H! for the MXH and
YRH systems, respectively, the asterisk indicates electronic
excitation,v and j are the initial vibrational and rotational
quantum numbers, and the final internal~i.e., rovibrational!
energy of the diatomic fragment isEint8 for reaction products
andEint9 in the quenched arrangement.

We label the initial conditions by the total energyE
given in eV and the initial rotational statej of the diatomic
molecule@i.e., by (E/eV,j )]. For all of the cases considered
here, the diatom is initially in its ground vibrational state
~i.e.,v50), and the total angular momentum of the system is
zero. Electronic angular momentum is neglected.

The nine MXH cases are: the SB, SL, and WL param-
etrizations of the MXH system with the masses of the M, H,
and X model atoms equal to 6.046 95, 1.007 83, and
2.015 65 amu, respectively, and with~1.10,0!, ~1.10,1!, and
~1.10,2! initial conditions. Details of the MXH parametriza-
tions and initial conditions are given in Ref. 27.

The three YRH cases are the YRH~0.1! parametrization
with the ~1.10,0! initial conditions, and the YRH~0.2! param-
etrization with the~1.02,0! and ~1.10,6! initial conditions.
The masses of the Y, R, and H atoms are 10, 6, and 1.007 83
amu, respectively. Details of the YRH parametrizations and
initial conditions are given in Ref. 28.

Since we do not expect the semiclassical methods to
reproduce quantum mechanical oscillations in most cases,
and since these oscillations usually wash out in experimental
observables, our goal is to learn how well the semiclassical
results can reproduce the quantal ones when any oscillations
in the quantal results are averaged out. Therefore, the results
from quantum mechanical calculations at several energies at
and around the nominal scattering energy were calculated
and averaged~full details are given elsewhere11,27,28!. In al-
most all cases, the values obtained by averaging are very
similar to the values obtained at the nominal energy.

For the methods involving trajectories, the coordinates
and momenta of the nuclei and the electronic state popula-
tions were integrated using an adaptive integration algorithm
that was designed for use with semiclassical trajectory
calculations.22 The algorithm uses a Bulirsch–Stoer integra-
tor with polynomial extrapolation29,30 modified such that the
integrator is prohibited from stepping over local peaks and
minima in the electronic probabilities. For the present calcu-
lations, the integration parameters27 were given the following
values: eBS510212Eh (1Eh527.211 eV) and hmin

51024 a.u. (1 a.u.52.418931022 fs), which give con-
verged results for the YRH and MXH systems. The trajecto-
ries begin the simulation with the lone atom~Y in the case of
YRH and M in the case of MXH! separated from the center-
of-mass of the diatom by 35a0 (1a050.529 18 Å) for the
MXH cases and by 20a0 for the YRH cases, and the simu-
lation was ended when the product fragments were separated
by at least 30a0 for both systems. We have verified that the
results of the semiclassical simulations do not change when
these distances are increased.

For the methods involving trajectories, the final state in-
ternal energiesEint8 or Eint9 , were determined without quanti-
zation. In particular, in all trajectory methods, the relative
translational energy and the electronic energy become con-
stant after the collision, and the internal energy is computed
as total energy minus final relative translational energy mi-
nus final electronic energy.~Note that, for the problems con-
sidered here,Ukk5Vk asymptotically, and the final electronic
energy isV1 or V2 in TSH and DM trajectories whereas it is
some value betweenV1 andV2 in Ehrenfest trajectories.! In
the Ehrenfest calculations, the quenching probability was
computed by the histogram method.
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VI. RESULTS AND DISCUSSION

The semiclassical trajectory calculations and the accu-
rate quantum mechanical results are compared for the fol-
lowing six quantities (i 51,2,...,6):

~i! PR is the probability of reaction, which is the out-
come in Eq.~29a!.

~ii ! PQ is the probability of quenching, which is the out-
come in Eq.~29b!.

~iii ! PN is the total probability of a nonadiabatic event,
which is the sum ofPR andPQ .

~iv! FR is the reactive branching fraction, which is de-
fined asPR /PN .

~v! ^Eint8 & is the average internal energy of the diatomic
fragment in Eq.~29a!.

~vi! ^Eint9 & is the average internal energy of the diatomic
fragment in Eq.~29b!.

For the three probabilities the errore ia for quantityi and
test casea ~nine cases for MXH and three cases for YRH! is
reported as the logarithmically averaged percentage error de-
scribed elsewhere,31 and for the remaining three quantities,
FR , ^Eint8 &, and ^Eint9 &, e ia the error is defined as the un-
signed relative percentage error given by

e ia5
uQia

traj2Qia
quantalu

Qia
quantal

3100. ~30!

For casea, the average error in probabilities is

ēa~Prob!5
1

3 (
i 51

3

e ia , ~31!

and for the next three quantities,FR , ^Eint8 &, and ^Eint9 &
~which represent how the energy of the system is fraction-
ated into various nuclear coordinates!, the average error is

ēa~Fract!5
1

3 (
i 54

6

e ia . ~32!

These were then averaged over the nine MXH cases to give
the MXH percentage error

PE~X;MXH !5
100

9 (
a51

9

ēa~X!, ~33!

and similarly for the three YRH cases to give YRH percent-
age error

PE~X;YRH!5
100

3 (
a510

12

ēa~X!, ~34!

whereX515 ‘‘Prob’’ and X525 ‘‘Fract.’’ Finally we aver-
aged the two types of errors and two types of systems to
obtain ‘‘average’’ mean unsigned percentage errors:

PE~average)5
1

2 (
X51

2
PE~X,MXH !1PE~X,YRH!

2
. ~35!

We report numerical results for five quantities in Tables I
and III: PE~Prob;MXH!, PE~Fract;MXH!, PE~Prob;YRH!,
PE~Fract;YRH!, and PE~average!. Semiclassical calculations
were performed in the adiabatic~A!, diabatic~D!, and Cala-
veras County~CC! representations.1~d! The Calaveras County
representation is defined as the representation with the fewest
hopping attempts in a trajectory surface hopping calculation,
and previous work has shown1~d! that this representation is,
on average, the most accurate representation for trajectory
surface hopping.

Results for the SCDM, CSDM, and CSDM-C methods
are presented in Table I forE050.1Eh andC51 and using
Eq. ~28!. The more coherent CSDM and CSDM-C methods
are more accurate than the SCDM method for the probabili-
ties in the YRH test cases when using the diabatic represen-
tation. For the rest of the test cases, the errors are similar for
these three methods. This result indicates that for many sys-
tems the local coherence in the SCDM may be enough to
obtain good results, but for certain cases a more coherent
approach is necessary. In no case are the more coherent
methods significantly less accurate than less coherent SCDM
method.

A key reason for the greater success of the CSDM and
CSDM-C methods appears to be that they are a little more
coherent than SCDM. The MXH system has a diabatic cross-
ing of the Landau–Zener–Teller~LZT! type so that in the
strong interaction region, the decay-of-mixing time in the
diabatic representation is greater than the decay-of-mixing
time in the adiabatic representation, and thus the SCDM
method in the diabatic representation works as well as the
two other methods. On the other hand, the YRH system has
a Rosen-Zener-Demkov~RZD! type of interaction so that in

TABLE I. Average percentage errors in the probabilities and internal energy distributions for nine MXH and
three YRH test cases.

Method Rep.

MXH YRH

AverageProb. Fract. Prob. Fract.

CSDMa A 25 20 24 19 22
D 28 20 42 20 27

CSDM-Ca A 25 20 23 19 22
D 28 20 51 20 30

SCDMa A 26 21 21 17 21
D 28 20 77 22 37

aObtained usingE050.1Eh andC51 in Eq. ~28!.
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the strong interaction region both representations have simi-
lar decay of mixings, and this is apparently why the SCDM
method does not work as well in the diabatic representation
as the two other methods. The reason why the SCDM in the
adiabatic representation is about as accurate as the CSDM
and CSDM-C methods for both the MXH and YRH systems
is apparently that the distribution of nonadiabatic coupling is
much more localized than the diabatic coupling so that the
DM trajectory on average has less deviation from the SE
trajectory in the adiabatic representation than in the diabatic
representation. In other words, for a given system, the DM
trajectory is more coherent in the adiabatic representation
than in the diabatic representation.

We used the anteater scheme to carry out ECP-TSH cal-
culations and tested it for the nine MXH and three YRH
cases mentioned above. The calculations were performed at
various values ofVcutoff until convergence was reached. Two
example cases in the adiabatic representation are presented in
Table II where convergence with respect toVcutoff is demon-
strated. Table II shows that converged results are obtained
for MXH SL ~1.1/eV,0! with a relatively largeVcutoff , but a
relatively smallVcutoff is required for YRH~0.1! ~1.1/eV,0!.
Using the anteater scheme, one can simply setVcutoff to zero.
However, since previous workers did not always setVcutoff

50, Table II is included to demonstrate that for some cases,
results may be sensitive to this parameter.

TABLE III. Mean unsigned relative errors~%! in the branching probabilities and internal energy distributions
for nine MXH and three YRH test cases.

Method Rep.

MXH YRH

AverageProb. Fract. Prob. Fract.

Trajectory surface hopping methods
ECP-TSH A 90 47 377 4 130

D 123 47 1016 30 304
CC 118 48 377 4 137

TFS1 A 57 34 53 18 41
D 54 26 723 49 213

CC 59 32 53 18 41

TFS2 A 54 29 43 15 35
D 47 22 548 29 161

CC 50 28 43 15 34

FSTU“V A 52 30 31 19 33
D 45 20 230 26 80

CC 45 28 31 19 33

Self-consistent potential methods
SE All 132 40 a a ¯

SCDM A 26 21 21 17 21
D 28 20 77 22 37

CC 28 21 21 17 22

CSDM-C A 25 20 23 19 22
D 28 20 51 20 30

CC 28 21 23 19 23

CSDM A 25 20 24 19 22
D 28 20 42 20 27

CC 27 21 24 19 23

aNone of the trajectories finished in product arrangements.

TABLE II. Convergence of mean unsigned percentage errors~%! in the branching probabilities and final
internal energies for the ECP-TSH method in the adiabatic representation.

Vcutoff ~eV) PR PQ PN FR Eint8 Eint9 Prob Fract All

MXH SL (E51.1 eV, j 50)
6 1021 100 516 44 188 2 12 220 67 144
6 1022 240 141 28 165 2 4 136 57 97
6 1023 230 120 28 158 2 5 126 55 90
6 1024 220 102 28 150 2 3 117 52 84

YRH~0.1! (E51.1 eV, j 50)
6 1025 273 282 281 2 3 4 279 3 141
6 1027 264 279 276 3 2 4 273 3 138
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In Table III, errors are presented for the TFS2 ~where2
denotes that the trajectory is reflected32,33at frustrated hops!,
TFS1 ~where1 denotes that the trajectory is left unchanged
at frustrated hops3,34!, FSTU“V ~where“V denotes that the
choice of whether to reflect or not at a frustrated hop is based
on the gradient of the potential as discussed previously5!, and
SE~Refs. 6 and 9! methods. First, we will discuss the surface
hopping methods~ECP-TSH, TFS1, TFS2, and FSTU¹V).
Table III shows that ECP-TSH method is less accurate on
average than the TFS method for both the adiabatic and di-
abatic representations, in particular the branching probabili-
ties are much worse in the ECP-TSH method than in the TFS
method. This may be partly because some of frustrated hops
in the ECP-TSH method are not frustrated in the TFS method
as the TFS method allows hops to occur all along the trajec-
tory. Note that for the YRH test cases, surface hopping meth-
ods in general give very different results in the adiabatic and
diabatic representations. The FSTU“V method~which does
not incorporate any explicit treatment of decoherence! is the
most accurate surface hopping method, and it is the least
dependent on the choice of electronic representation. It is
possible that one could obtain better a surface hopping
method by including an explicit treatment of decoherence in
surface hopping using some but not all features of the ECP-
TSH method, but we did not pursue this here.

Next we discuss the SCP methods~SE, SCDM,
CSDM-C, and CSDM!. The SE method is not accurate for
real multidimensional systems. Table III shows that the
CSDM, CSDM-C, and the SCDM methods are the most ac-
curate with errors comparable to those35 for single-surface
quasiclassical trajectory calculations. The CSDM and
CSDM-C methods are less sensitive to the choice of elec-
tronic representation than the SCDM method. The CSDM
method provides a simple and accurate solution to the prob-
lem of combining decay-of-mixing trajectories and coherent
electronic state densities in non-Born–Oppenheimer dynam-
ics.

To gain insight into the decay-of-mixing process incor-
porated into the successful decay-of-mixing algorithms, we
computed the time average of the decay-of-mixing rates de-
fined by Eq.~28!. As the decay-of-mixing time is not mean-
ingful in the initial and final legs of the trajectories where the
coupling is essentially zero, we average only over the por-
tions of the trajectories where 0.02<rkk<0.98. Recall that
t12 is the reciprocal of a first-order rate constant, and we

should average rates, not their reciprocals. Therefore, to av-
erage the rates, we calculate the time average of 1/t12 for this
portion of each trajectory and then average these values over
the ensemble of trajectories. Then, the result is reexpressed
in terms of time units by taking a reciprocal:

t̄[
1

^1/t12&
. ~36!

The results for the three successful decay-of-mixing methods
are shown in Table IV. We notice that the average decay of
mixing time is shorter in the adiabatic representation than in
the diabatic representation for MXH~SB! with j 52 and
YRH ~0.2! with j 50, but the average decay of mixing time
is longer in the adiabatic representation than in the diabatic
representation for MXH~WL! with j 51. The fact that
CSDM does not require long algorithmic decay times to
mimic quantum mechanics may be very important for under-
standing the physical origin of decoherence because requir-
ing a large algorithmic component in the decay of mixing
could mask the physical origin of decoherence.

We know for MXH ~SB! with j 52 and YRH~0.2! with
j 50 that the Calaveras County representation is the adia-
batic representation, while for MXH~WL! with j 51, the
Calaveras County representation is the diabatic representa-
tion. The examples in Table IV show that the representation
with shorter average decay of mixing corresponds to the
Calaveras County representation. This coincidence is also
true for the other decay of mixing methods shown in Table II
of Ref. 11. Thus it may be unnecessary to run surface hop-
ping calculations to determine the Calaveras County repre-
sentation; one can simply use the representation in whicht̄ is
shorter.

Table IV also shows the average number of local minima
per trajectory of Eq.~20! for the CSDM method and of Eq.
~21! for the CSDM-C method. These statistics are important
because it is at such local minima where the electronic den-
sity matrix for computing the switching probability is set
equal to the decay-of-mixing electronic density matrix. Some
readers might be surprised at how large these numbers are
since one often thinks of polyatomic collisions as similar to
atomic collisions, where this number might often be only 2.
For the present cases the number of local minima in the
CSDM-C method is roughly equal to 2.5 times the number of
local minima in the CSDM method. This is because the

TABLE IV. Mean decay-of-mixing times~fs! for SCDM, CSDM, and CSDM-C.

Method Rep.
MXH SB

j 52
MXH WL

j 51
YRH 0.2

1.02 eV, j 50

SCDM A 7.8 8.7 33.0
D 9.7 7.5 33.0

CSDM-C A 7.8~227!a 8.6~118! 34~184!
D 9.6~234! 7.5~117! 34~184!

CSDM A 7.8~90! 8.6~58! 34~78!
D 9.6~94! 7.5~57! 34~78!

aNumbers in parentheses are the average number of minima per trajectory of Eq.~20! for the CSDM method
and of Eq.~21! for the CSDM-C method. As in Tables I and III, we usedC51 andE050.1Eh in Eq. ~28!.
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CSDM-C method often has a local minimum at a vibrational
model turning point, which is not a local minimum for the
CSDM method.

The present study illustrates the importance of properly
balancing coherence and decoherence, and the formulation in
Eq. ~28! is reasonable for studying collisions and photo-
chemical processes in small as well as big molecules. Nev-
ertheless a deeper understanding of the best ways to incor-
porate coherence and decoherence into semiclassical theory
would be worthwhile.

Although the present paper only involves two-state ap-
plications, the methods~FSTU and decay of mixing! that we
have presented are all defined for the general multistate case.

VII. CONCLUDING REMARKS

Recent interest in quantum measurement theory has led
to increased interest in decoherence and its relation to the
classical limit of quantum mechanics.36–38In a more specific
context, Thachuk, Ivanov, and Wardlaw12 illuminated the key
roles of coherence and decoherence for two-state one-
dimensional system interacting with an oscillatory time-
dependent electric field, and Rossky and co-workers10 em-
phasized the importance of decoherence in the simulation of
electronically nonadiabatic processes in the condensed
phases. Hack and one of the authors23 developed a formal-
ism, called natural decay of mixing, for adding decoherence
to the semiclassical Ehrenfest method and showed that the
resulting treatment were the most accurate of all available
semiclassical trajectory methods for non-Born–Oppenheimer
collisions. We showed in a previous paper11 that we obtain
more accurate results for electronically nonadiabatic colli-
sions by adding more coherence to the natural decay-of-
mixing algorithm; the resulting algorithm was called self-
consistent decay of mixing~SCDM!. In the present paper, by
using a coherent complete passage of each strong interaction
region to compute the local switching probability of the
SCDM method, we have further improved the decay-of-
mixing method for nonadiabatic dynamics, resulting in a al-
gorithm called coherent switches with decay of mixing
~CSDM!. We also consider the exact complete passage
~ECP! algorithm of Parlant and Gislason14 for adding coher-
ence to trajectory surface hopping~TSH! calculations. Al-
though the ECP-TSH method does not improve the TFS
method on average, the key feature of this method is bor-
rowed for the SCDM method, where it leads to the CSDM
method.

It is important to emphasize that the decay-of-mixing
method, CSDM, performs almost equally well in the adia-
batic and diabatic representations. The reasons why this is
important can be summarized as follows: First, it is not al-
ways possible to predict~when the accurate quantal results
are unavailable! which representation is preferred. Second
and even more significant, for complex systems there can be
regions of configuration space in which the adiabatic repre-
sentation is preferred, but, for the same system with the same
initial conditions, there can be other regions of configuration
space where the diabatic representation is more natural. In
particular, in real molecular dynamics simulations, one may
encounter systems with several qualitatively different kinds

of coupling regions. A good example would be a system with
a conical intersection where close to the cone, one has an
LZT type of avoided crossing such as MXH, but in regions
far from the cone one has RZD type interactions as in YRH.
Another example would be a three-state system where the
coupling between states 1 and 2 is most naturally treated in
the adiabatic representation but the couplings between states
1 and 3 or 2 and 3 are more diabatic. For such a system, one
needs a method that works equally well in both representa-
tions. CSDM is especially well suited to satisfy this need for
multidimensional dynamics.

One will be much safer to treat general complex systems
if one has method that yields accurate results in both repre-
sentations, and CSDM can fill this need.

The key results of this paper are in Table III. This table
shows that for 12 test cases involving five different atom-
diatom systems, the CSDM method is the most accurate self-
consistent potential~SCP! method, and it is also more accu-
rate than the FSTU“V method, which we have found to be
is the most accurate TSH method. As compared to surface
hopping methods, the CSDM method has the advantage that
coordinates and momenta are continuous with continuous de-
rivatives along each trajectory; and there are no frustrated
hops. As compared to the semiclassical Ehrenfest method, it
contains a better treatment of decoherence. The computa-
tional effort for practical problems is nearly the same as for
TSH and semiclassical Ehrenfest methods. The CSDM
method is suited for general polyatomic applications.
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APPENDIX A: SWITCHING PROBABILITY
FOR MULTISTATE CASES

We can formulate the switching probability for the mu-
litstate case by following Tully’s fewest switching method,3

and the switching probability from the current decoherent
stateK to another decoherent stateK8 is given by

PK→K85maxS ~bK8K2 ṙKK
D !dt

rKK
,0D , ~A1!

where we have

bK8K522\21 Im~rK8KUK8K! ~A2!

for the diabatic representation whereUK8K5UKK8 , and

bK8K52 Re~rK8KṘ"dKK8! ~A3!

for the adiabatic representation wheredK8K52dKK8 . ~Re-
call thatrKK85rK8K

* .) The NDM method requires that both
rKK and rK8K in Eqs. ~A1!–~A3! are calculated from the
decay-of-mixing electronic density of Eq.~9!. The SCDM
and CSDM methods require omittingṙKK

D in Eq. ~A1!; fur-
thermore in the CSDM method bothrKK and rK8K should
also be replaced byr̃KK and r̃K8K defined in Sec. IV C.

It is useful to point out the relationship to the coherent
term in Eq.~9!, i.e.,
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ṙKK
C 5 (

K8ÞK

bKK8 . ~A4!

APPENDIX B: RESULTS WITH SELECTED E0 VALUES

In Table V results forE050.05Eh , 0.1Eh , and 0.2Eh

are presented for the MXH system using the SCDM, CSDM,
and CSDM-C methods. The overall percentage errors in the
last column of the table show that the results are relatively
insensitive to the value ofE0 and are slightly more accurate
for E050.1Eh . A similar conclusion is drawn from the re-
sults in Table VI for the YRH system.
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